Устройство и принцип работы солнечной батареи: схема и комплектующие, история создания

Уже почти два века человечество напряжённо думает, где и как достать необходимое количество электрической энергии для своих многочисленных изобретений и возрастающих потребностей.

За это время появились могучие электростанции, масштабные ГЭС, сила расщеплённого атома и мощь бурных рек пришла на помощь человечеству.

Особенно стремительно развиваются в различных регионах Земли в последние десятилетия такие альтернативные источники энергии, как ветровые станции и солнечные батареи.

Учитывая, что угасание Солнца ожидается лишь через 4-5 млрд. лет, такой источник энергии, как солнечные батареи можно считать неисчерпаемым. Поговорим о нём. Что это такое, откуда взялось и как устроено.

Изобретение

Древний инсолятор
Инсолятор О. Мушо
Первым, кто смог экспериментально обнаружить взаимодействие между светом и электрической энергией, был знаменитый немецкий физик Генрих Герц. Также известно, что явление, аналогичное открытому позднее фотоэффекту наблюдал и исследовал в 1839 г. Эдмон Беккерель.

Он сумел выяснить, что ультрафиолет значительно способствует возникновению и прохождению разряда между двумя проводниками электрической энергии. Однако, проведя ряд экспериментов, Герц не стал больше развивать эту тему.

Первую в мире, работоспособную схему по выработке и передаче электрической энергии с применением лучей света произвёл русский учёный из Москвы Александр Столетов. Он создал прообраз первого в мире фотоэлемента.

Француз Огюст Мушо в конце позапрошлого столетия сумел создать систему, при которой сфокусированные и преобразованные солнечные лучи приводили в движение печатную машину.

Развитие исследований по преобразованию солнечной энергии в электрическую в 20 веке ознаменовалось работой А. Эйнштейна по открытию фотоэффекта (явление отрывания заряженных частиц от поверхности некоторого вещества, находящегося под действием другого вещества или света).

Это привело к появлению первых фотоэлементов на основе селена (Se – 34), а затем и таллия (Tl – 81). В 1930 гг. учёными-физиками Академии наук СССР был создан медно-таллиевый (Cu-Tl) фотоэлемент с наибольшим для тех времён КПД в 1%.

Появившиеся позднее фотоэлементы на основе Кремния (Si-14) имели в 6 раз больший КПД. В 1953 г. была разработана первая в мире солнечная батарея. Спустя всего 5 лет учёные СССР установили первые солнечные батареи на искусственный спутник Земли №3.

Спутник с СБ
Третий искусственный спутник Земли (СССР, 15 мая 1958 г.) с солнечными батареями.
В 1970-х гг. прошлого века учёные выяснили, что полупроводники лучше многих металлов образуют электрический ток из света. С тех пор появилось множество новых видов и материалов для производства солнечных батарей.

Именно открытие фотоэффекта, произведённое А. Эйнштейном, и привело к возникновению и развитию индустрии солнечных батарей.

Как устроена

Схема получения энергии СБ
Система СБ
Итак, солнечная батарея – система взаимосвязанных элементов, структура которых позволяет, используя принцип фотоэффекта, преобразовывать попадающий на них под определённым углом солнечный свет в электрический ток.

Система, преобразующая солнечный свет в электрическую энергию состоит из следующих комплектующих элементов:

  1. Материал-полупроводник (плотно совмещённые два слоя материалов с разной проводимостью). Это может быть, например, монокристаллический или поликристаллический кремний с добавлением других химических соединений, позволяющих получить нужные для возникновения фотоэффекта свойства.

    Для возникновения перехода электронов из одного материала в другой необходимо, чтобы один из слоёв имел избыток электронов, а другой – их недостаток. Переход электронов в область с их недостатком называют p-n переходом.

  2. Тончайший слой элемента, противостоящего переходу электронов (размещается между этими слоями).
  3. Источник электропитания (если его подключить к противостоящему слою, электроны смогут легко преодолевать эту запорную зону). Так возникнет упорядоченное движение зараженных частиц, именуемое электрическим током.
  4. Аккумулятор (накапливает и сохраняет энергию).
  5. Контроллер заряда.
  6. Инвертор-преобразователь (преобразование получаемого от солнечной батареи постоянного электрического тока в переменный ток).
  7. Стабилизатор напряжения (предназначен для создания напряжения нужного диапазона в системе солнечной батареи).

Схематическое изображение СБ
Схема работы солнечной панели
Фотоны света (солнечный свет), попадающие на поверхность полупроводника при столкновении с его поверхностью передают свою энергию электронам полупроводника. Выбитые вследствие удара из полупроводника электроны преодолевают защитный слой, имея дополнительную энергию.

Таким образом, отрицательные электроны покидают p-проводник, переходя в проводник n, положительные – наоборот. Такому переходу способствуют существующие в проводниках на тот момент электрические поля, которые в последствие увеличивают силу и разность зарядов (до 0.5 В в небольшом проводнике).

Намереваясь приобрести солнечную батарею или изготовить её, тщательно просчитайте:

  • стоимость такой батареи и необходимого оборудования;
  • необходимое вам количество электрической энергии;
  • количество необходимых вам батарей;
  • число солнечных дней в году в вашем регионе;
  • необходимую вам площадь для установки солнечных батарей.

Сила тока

Сила электрического тока в солнечном элементе зависит от таких факторов, как:

  • количество света, попавшего на поверхность элемента;
  • интенсивность излучения источника света;
  • площадь принимающего фотоны элемента;
  • угол падения света на принимающий элемент;
  • время эксплуатации элемента;
  • КПД системы (в настоящее время у самых передовых аналогов он составляет не более 24%. О КПД солнечных батарей Вы можете прочитать в этой статье.);
  • температура окружающего воздуха (чем выше она, тем больше у элемента сопротивление).

Элементы для улучшения работы

Солнечный трекер
СБ на солнечном трекере
Для организации более эффективной работы фотоэлементов в конструкции солнечной батареи используют диод Шоттки.

Он представляет собой диод полупроводникового типа, который имеет меньше по сравнению с другими конструкциями падение напряжения при включении напрямую.

Он работает на основе использования перехода p-n типа в среде “металл-проводник”. Сравнение с кремниевыми диодами показывает, что прямое напряжение снижается в среднем с 0,65 В до 0,35 В, что способствует росту КПД системы.

Для более эффективного попадания солнечного света на поверхность батареи разработано и используется специальное устройство – солнечный трекер. Данное устройство предназначено для слежения за движением Солнца и поворота солнечной панели (батареи) таким образом, чтобы на её поверхность попадало как можно больше солнечных лучей (оптимизация угла падения лучей).

Для более рационального соединения двух и более панелей солнечных батарей и получения нужного сопротивления в такой системе используются специальные сертифицированные коннекторы, например МС4 Т (male+female).

Преимущества и недостатки

Положительными чертами данного вида выработки энергии являются:

  • экологичность (не загрязняет окружающую среду);
  • долговечность (при бережном использовании фотоэлементы прослужат несколько десятков лет);
  • достаточно простой принцип работы.

Минусами системы являются:

  • сложность сборки самой системы и наладки её работы;
  • низкий КПД (требуется очень большая площадь солнечных батарей для обеспечения нужд даже небольшой семьи. Для 3-4 чел, потребляющих 200 Кв в месяц, нужно 12-15 кв. метров батарей);
  • достаточно высокая стоимость и низкая окупаемость системы.

Использование солнечной энергии в мире

Немецкий комплекс СБ
Комплекс солнечных батарей в Германии
Многие государства всерьёз задумались о масштабном производстве и использовании солнечной энергии.

Лидерами по производству энергии с помощью солнечных батарей являются США, Япония и Германия.

Производство солнечной энергии получает своё развитие и в России.

В настоящее время в РФ уже построено следующее количество установок по производству солнечной энергии:

  • Краснодарский край – 46 ед.;
  • Дагестан – 8 ед.;
  • Ставропольский край – 2 ед.;
  • Бурятия, Хабаровский край, Костромская область – по 1 ед.

Бурное развитие данной отрасли во всем мире оставляет надежду на то, что в будущем этот неисчерпаемый источник экологичной энергии станет основным для населения планеты.

Смотрите видео, в котором подробно рассказывается об устройстве и производстве солнечных панелей:

Оценка:
47
Автор статьи - Дмитрий
Автор:
Дмитрий
Юрий Банников
2017-10-10 08:42:00
Положительные электроны? При снижении снимаемого напряжения увеличивается КПД? При моих двух классах и семи коридорах образования.... чушь и бред! Электрон априори не может быть положительным. КПД- есть разница между потраченой энергией и полученой работой, снижая напряжение- увеличиваем ток для того же результата. Для большего тока- большее сечение проводника. Объёмное сопротивление увеличивается, мощность падает, работы меньше. Или ставим катушки, тогда возрастает линейное сопротивление, хоть и меньше, чем при объёмном, но результат тот же!
женя
2017-10-30 14:07:27
а электроны не могут быть положительно заряжены или отрицательно ?тут же переход зависит от проводника.